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28 Abstract

29 Wheat blast, caused by Pyricularia oryzae Triticum (PoT) lineage, is a major constraint to wheat 

30 production, mainly in the tropics of Brazil where severe epidemics have been more frequent. We 

31 analyzed disease and wheat yield data from 42 uniform field trials conducted during nine years 

32 (2012 to 2020) in order to assess whether the percent control and yield response were influenced 

33 by fungicide type, region (tropical or subtropical), and year. Six treatments were selected, all 

34 evaluated in at least 19 trials. Two fungicides were applied as solo active ingredients: 

35 MANCozeb, and TEBUconazole, and four were premixes: AZOXystrobin + TEBU, 

36 TriFLoXystrobin + PROThioconazole, TFLX + TEBU, and PYRAclostrobin + EPOXiconazole. 

37 Percent control, calculated from back-transforming estimates by a meta-analysis network model 

38 fitted to the log of the means, ranged from 43 to 58%, with all but PYRA + EPOX showing 

39 efficacy greater than 52% on average, not differing among them. The variation in both efficacy 

40 and yield response was explained by region and all but TEBU performed better in the subtropics 

41 than in the tropics. Yield response from using three sequential sprays was around two times 

42 greater in the subtropics (319 to 532 kg/ha) than in the tropics (149 to 241.3 kg/ha). No 

43 significant decline in fungicide efficacy or yield response was observed in nine years of study for 

44 any of the fungicides. Our results reinforce the need to improve control by adopting an integrated 

45 management approach in the tropics given the poorer performance and lower profitability, 

46 especially for the premixes, than in the subtropics.

47 Keywords: Pyricularia oryzae, chemical control, profitability, meta-analysis

48

49 Introduction

50 Wheat blast is caused by Pyricularia oryzae Triticum lineage (PoT, syn Magnaporthe oryzae, 

51 MoT), an ascomycete fungus first found in 1985 in the state of Paraná, Brazil (Igarashi et al. 

52 1986). Since then, wheat blast has spread to other wheat-growing countries in South America, 

53 including Bolivia, Paraguay, Argentina, and Uruguay (Cruz and Valent 2017; Ceresini et al. 

54 2018). About thirty years after its discovery, the global concern with wheat blast epidemics 

55 increased significantly after its report in South Asia (Malaker et al. 2016), and East Africa 

56 (Zambia) (Tembo et al. 2020). 

57 The fungus infects both the leaves and the heads of the wheat plant, but infections that occur 

58 during the reproductive stage are more frequent and of major economic significance; complete 

59 bleaching of heads may occur, severely affecting grain filling (Cruz and Valent 2017; Ceresini et 
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60 al. 2018). Foliar infections are generally mild in wheat but may increase in severity, and 

61 importance for head infections, when warm and wet weather prevails during the early season 

62 (Cruz et al. 2016; Perelló et al. 2017). An early study reported a 27% reduction in yield due to 

63 wheat blast (Goulart et al. 1990), but yield losses up to 70% may occur depending on the 

64 infection timing, weather conditions, and cultivar susceptibility (Goulart and Paiva 2000). 

65 Although the disease is present over a wide range of latitudes, the most severe epidemics have 

66 been reported in wheat-growing regions in the tropics, during the summer/fall season sowings, 

67 such as those in Central Brazil and Bolivia (Pagani et al. 2014; Cruz and Valent 2017), and more 

68 recently, in Bangladesh (Islam et al. 2019). Because epidemics are favored by the occurrence of 

69 temperatures between 25°C and 30°C, 10 hours or more of leaf wetness, and 24 to 48 hours of 

70 relative humidity >90%, wheat blast epidemics are particularly more damaging in the tropics 

71 than in the subtropics (Uddin et al. 2003; Cardoso et al. 2008; Silva et al. 2021). 

72 Once the wheat blast pathogen is introduced, the necrotrophic fungus is capable of infecting 

73 and surviving in other grasses nearby wheat fields which are assumed to serve as a source of 

74 inoculum for epidemics in wheat if they are present prior to the wheat season (Tosa and Chuma 

75 2014; Urashima et al. 2017; Ceresini et al. 2019). The ability of the fungus to disperse over long 

76 distances is not entirely known but evidence has shown that Pyricularia spores can disperse 

77 through air currents up to 1 km distant from the source (Urashima et al. 2007), or across 

78 continents via infected seeds (Ceresini et al. 2018). Although several control methods have been 

79 explored in research, including biological control agents (Chakraborty et al. 2020a, 2020b), the 

80 combination of cultural (Coelho et al. 2016), nutritional (Xavier Filha et al. 2011; Silva et al. 

81 2016), genetic, and chemical control have been commercially feasible and more effective in 

82 disease management (Cruz et al. 2019; Cruppe et al. 2020).

83 Several chemicals have been evaluated for the control of the disease since the first blast 

84 epidemics in Brazil (Goulart and Paiva 1993; Santana et al. 2013). These studies have shown that 

85 two to three sequential applications of fungicides may be required for disease control, yet with 

86 relatively modest levels of control being achieved (Santana et al. 2013). Currently, fifty-three 

87 commercial fungicides have been registered for wheat blast control in Brazil (AGROFIT 2021). 

88 These include Quinone outside Inhibitor (QoI) and Demethylation Inhibitor (DMI) marketed 

89 solely or mixed together, but also multi-site mode of action fungicides such as mancozeb. 

90 Despite the importance of wheat blast, the number of publications on chemical control of 

91 wheat blast is relatively small and the results are inconsistent. Successful control with efficacy as 

92 high as 90% has been achieved when combining the use of QoI + DMI premix and less 

93 susceptible cultivar (Rios et al. 2016). However, levels as low as 45% efficacy have been 
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94 reported in susceptible cultivars grown at very favorable environments for blast outbreaks in the 

95 Brazilian Cerrado (Pagani et al. 2014). In Bangladesh, 19-commercial fungicides had their 

96 efficacy tested on a susceptible cultivar, and the blast control levels ranged from 43 to 96% (Roy 

97 et al. 2020). A 23-environment fungicide trial conducted in Brazil and Bolivia reported various 

98 levels of efficacy for QoI, DMI, and multi-site fungicides depending on disease pressure (Cruz et 

99 al. 2019). 

100 Meta-analytic approaches have become standard to summarize the effect of treatments for 

101 fungicide testing data, including wheat diseases (Paul et al. 2008, 2018a; Machado et al. 2017; 

102 Barro et al. 2019, 2020). Uniform fungicide trials targeting wheat blast control were established 

103 in 2011 and performed yearly following a standardized protocol. The main goal of the network is 

104 to gather information on disease control and yield loss prevention across the main growing 

105 regions. The data have been analyzed and published as technical reports (Santana et al., 2014; 

106 2016a; 2016b; 2019a; 2019b; 2020a; 2020b). Data from the first three years of the cooperative 

107 trials have been published in combination with Bolivian data (Cruz et al. 2019), but several 

108 questions remained, including those related to differences between regions, years and 

109 profitability of fungicide applications. Using data collected from an additional six-year period, 

110 totaling 26 new trials, our objectives were to: 1) obtain meta-analytic estimates of wheat head 

111 blast control efficacy and yield response; 2) evaluate whether the estimates vary over years, 

112 regions, and on different levels of disease or yield; and 3) calculate fungicide profitability based 

113 on the break-even probabilities.

114

115 Material and Methods

116 Data source. Data were obtained from 44 field trials conducted by researchers of the wheat 

117 blast cooperative fungicide trial network (Rede de Ensaios Cooperativos de Brusone do Trigo) 

118 during nine years (seasons) (2012 to 2020). The data have been published primarily in yearly 

119 single reports for ranking fungicide efficacy (Santana et al. 2013, 2014, 2016a, 2016b, 2016c, 

120 2019a, 2019b, 2020a, 2020b). Data from the 2020 season has not been published.

121 The trials were conducted in eleven municipalities across six Brazilian States: Paraná (PR), 

122 São Paulo (SP), Distrito Federal (DF), Mato Grosso (MT), Mato Grosso do Sul (MS), and Minas 

123 Gerais (MG) (Fig. 1). The trials were grouped into two climatic regions: Tropical (19 trials [DF, 

124 MT, MS, MG]) and Subtropical (25 trials [PR, SP]). 

125
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126 Experimental procedures. A susceptible variety, adapted for the respective region, was used 

127 in the trials (data not shown), and all agronomic practices (fertilization, weeds, and pest control) 

128 were performed according to regional recommendations (Comissão Brasileira de Pesquisa de 

129 Trigo e Triticale 2020). The trials were conducted following a completely randomized block 

130 design with four replications (a plot of 12 m2 was a replication). All fungicides were applied 

131 three times, starting at the heading stage (60 of Zadoks growth stages) (Zadoks et al. 1974), and 

132 following 7 to 10 days apart. A backpack sprayer pressurized by CO2 calibrated to spray 200 

133 L/ha was used to perform the applications.

134

135 Wheat blast and grain yield assessments. Head blast incidence (INC) (proportion of 

136 diseased head) and conditional severity (SEV) (proportion of diseased spikelets in the diseased 

137 head) (Maciel et al. 2013) were visually assessed in 1-m of each of the two central rows, at 

138 wheat grain soft dough stage (85 of Zadoks growth stages) (Zadoks et al. 1974). Wheat blast 

139 index (WBI) was calculated as WBI = (INC*SEV)/100. Yield was obtained by harvesting the 

140 central rows (4 m2) at full maturity. Grain weight and moisture were obtained for each treatment 

141 plot (fungicide + untreated). Crop yield was expressed in kg/ha at 13% moisture.

142

143 Fungicide treatment selection. To be included in the analysis, a fungicide treatment should 

144 have been tested in at least 19 trials conducted in at least four years and compared with an 

145 untreated check in the same trial. Six fungicides met the criteria, including four DMI + QoI 

146 premixes, and two single active ingredients (Table 1). After treatment selection, WBI and grain 

147 yield data were available in 42 trials each. 

148

149 Network meta-analysis and inconsistency. The data were available at the plot level for all 

150 treatments for each variable of interest (WBI and grain yield). These were aggregated at the trial 

151 level, which is a typical approach used in the meta-analysis (Madden et al. 2016). We fitted an 

152 arm-based network model, also known as a two-way unconditional linear mixed model, directly 

153 to the treatment means (log-transformed or untransformed) to further obtain control efficacy and 

154 yield response (Paul et al. 2008; Machado et al. 2017). Given the statistical properties of the data 

155 (Supplemental Fig. S1), means of WBI were log-transformed, while no transformation was 

156 required to obtain the mean difference in grain yield. The arm-based model can be written as

157

158   ,                                                     (1)𝒀𝒊 ∼ 𝑵(𝝁, 𝜮 + 𝑺𝒊)

159
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160 where  is the vector of L (log of the means of WBI) or absolute yield (D) for the six treatments 𝑌𝑖

161 plus the untreated check for the ith study,  is a vector representing the mean of  across all 𝜇 𝑌𝑖

162 studies,  is a 7 x 7 between-study variance-covariance matrix (for the six treatments plus the 𝛴

163 untreated check), and  is a within-study variance-covariance matrix for the ith study.  𝑆𝑖 𝑁

164 indicates a multivariate normal distribution.

165 For this approach, a measure of within-study variability is required to weight studies based on 

166 the inverse function of the sampling variance (Paul et al. 2008, 2010). Given the availability of 

167 data at the plot level, the within-study variability of L and D was calculated from the mean 

168 square error (MSE) obtained from a linear mixed model fitted to each individual trial, as 

169 described (Machado et al. 2017). Maximum likelihood estimation models were fitted to the data 

170 using the rma.mv function of metafor package (Viechtbauer 2010) of R (R Core Team 2021). 

171 The yield response ( ) was calculated directly after model fitting by subtracting estimated 𝐷

172 means of fungicide treatment and untreated check (Madden et al. 2016). For percent wheat blast 

173 control ( ), we calculated the differences of the estimated means of the logs ( IND) which equals 𝐶 𝐿 

174 the ratio of the two means (Paul et al. 2008). The  values and their 95% confidence intervals 𝐶

175 (CIs) were obtained by back-transforming IND and the respective upper and lower limits of their 𝐿 

176 95% CIs as described in Equation 2.

177

178                                                           (2) 𝐶 = (1 - exp (𝐿𝐼𝑁𝐷))𝑥 100 

179

180 Network inconsistency, or the extent to which different sources of evidence are compatible, is 

181 an important component to assess when performing a multi-arm network meta-analysis (Higgins 

182 et al. 2012). The most important source is a design-by-treatment interaction, also known as 

183 "design inconsistency", which provides a useful general framework for investigating 

184 inconsistency (Piepho 2014; Madden et al. 2016). To test for network inconsistency, we used a 

185 factorial-type ANOVA model to determine the significance of the treatment x design interaction, 

186 evaluated based on the Wald test statistic. The null hypothesis suggests that the network is 

187 consistent (Piepho 2014; Madden et al. 2016). Eight different designs (here design refers to the 

188 set of fungicide treatments in the trial) were found in the trials reporting both WBI and yield 

189 response (Supplemental Table S1).

190
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191 Moderator effects. Categorical or continuous moderator variables that could explain, at least 

192 a portion of the heterogeneity of the effects across trials, were included in the network model 

193 (Equation 1) (Madden et al. 2016). The expanded model is given by

194
195   ,                                                     (3)𝑌𝑖 ∼ 𝑁(µ + 𝛿𝑖, ∑ + 𝑆𝑖)

196

197 where  is the vector representing the moderator variable effect for the ith study (Paul et al. 𝛿𝑖

198 2010). All other terms were defined previously at Equation 1.

199 As categorical, we created baselines for WBI and wheat grain yield based on the median of 

200 the mean values in the untreated check. For baseline disease index, the trials were divided into 

201 two groups, representing WBI_low (WBI＜10%) and WBI_high (WBI ≥10%) disease scenarios. 

202 The baseline yield was defined as YLD_low (＜1200 kg/ha) or YLD_high (≥1200 kg/ha) based 

203 on the median yield in the untreated check plot. Finally, we created an additional categorical 

204 variable based on climatic region where trials were grouped into Tropical (DF, MT, MS, MG) 

205 and Subtropical (PR, SP) regions as mentioned previously (Fig. 1). As continuous moderators, 

206 year was included in the model to check whether there was any trend of decline in fungicide 

207 efficacy or yield response over time (Dalla Lana et al. 2018).

208 The moderator variables included in the model were tested using a Wald-type chi-square test 

209 to determine if their inclusion directly affected the differences in logs of WBI and the 

210 untransformed yield values (Paul et al. 2008).

211
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212 Economic analysis. Monte Carlo simulations were used to produce distributions of profits 

213 that each fungicide would have in each region (Subtropical and Tropical) based on their 

214 respective yield return ( , kg/ha). The profit was calculated from the difference between the 𝑫

215 income ( , US$/ha) and spraying cost (US$/ha), where  is the product of  and the wheat price 𝑰 𝑰 𝑫

216 ( , US$/kg).  was assumed to follow a truncated normal distribution between 0 and +∞, 𝑷 𝑫 𝑫 ∼

217 , where  is the mean  given by the estimated yield return ( ), and the  is the 𝑻𝑵(𝝁𝑫,𝝈𝑫) 𝝁𝑫 𝑫 𝑫 𝝈𝑫

218 standard deviation which was given by standard error of ( ), i.e. .  was assumed to 𝑫 𝑺𝑬(𝑫) 𝑷

219 follow a Gamma distribution, , where  and  are the shape and the rate 𝑷 ∼ 𝑮𝒂𝒎𝒎𝒂(𝜶,𝜷) 𝜶 𝜷

220 parameters, respectively. To estimate these parameters, we gathered wheat price historical data 

221 from the AGROLINK database from January 2012 to May 2021 (AGROLINK 2021). Two 

222 methods were used to estimate the parameters: nonlinear regression using least-squares to fit the 

223 empirical cumulative distribution function to the gamma cumulative distribution function, and 

224 maximum likelihood estimation (MLE). We used a two-sample Kolmogorov-Smirnov test (KS-

225 test) to evaluate the best estimates, in which the parameters that produce distribution with higher 

226 P-value in the KS-test against the empirical cumulative distribution.

227 The overall fungicide spraying cost ( ) accounting for fungicide price of 2019/20 crop season, 𝑥

228 and operational cost of 10 U$/application for three applications are described in Table 1. The 

229 spraying cost ( ) was assumed to follow be uniformly distributed with values varying from 5% 𝑆𝐶

230 above and below the overall fungicide spraying cost ( ), therefore, .𝑥 𝑆𝐶 ∼ 𝑈𝑛𝑖𝑓(0.95𝑥,1.05𝑥)

231 We ran a total of 50,000 Monte Carlo simulations for each variable ( , , and ), the 𝑃 𝐷 𝑆𝐶

232 distribution of  was obtained and then the distribution of profits was derived. Break-even 𝐼

233 probabilities were calculated as the relative frequency of values that the income was equal to or 

234 higher than the fungicide spraying cost ( ).𝐼 ≥ 𝐶

235

236 Results

237 Wheat blast index (WBI) and yield data at the trial level. There was considerable variation 

238 in WBI and grain yield in the untreated plots across seasons, regions, and locations/trials (each 

239 point in Fig. 2 represents a single trial). WBI in the untreated plots of the trials ranged from 0 to 

240 100% (median 11.06%). The median WBI was higher (12.3%) in the Tropical than in the 

241 Subtropical (8.1%) region (Fig. 2 B). Across growing seasons, the highest (89.8%) and the 

242 lowest (0.8%) WBI medians in the untreated check were recorded in the 2019 and 2017 seasons, 

243 respectively (Fig. 2 C). 

244 Baseline yield ranged from 15.6 to 4,276.2 kg/ha (median = 1,203.5 kg/ha) across the trials. 

245 The median yield was lower in the Tropical (1,000 kg/ha) than in the Subtropical region (1,281 
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246 kg/ha) (Fig. 2 E). The highest median yield (2,173 kg/ha) was observed in 2014 and the lowest 

247 (571.6 kg/ha) in the 2019 crop season (Fig. 2 F). As expected, lower WBI and higher grain yield 

248 was observed in the fungicide treatments compared with the untreated check (Fig. 2 A to 2 D).

249

250 Overall meta-analytic estimates of control efficacy and yield response. For all fungicides 

251 tested in the meta-analytic model, the overall WBI log response ratio ( ) differed (P < 𝑳𝑰𝑵𝑫

252 0.0001) from the untreated CHECK (Supplemental Table S2). Overall estimates of percent 

253 control efficacy ( ), obtained from back-transforming differences of the estimates of log of WBI 𝑪

254 ( ) between the fungicide-treated and untreated plots, ranging from 43.2% and 58.0%. 𝑳𝑰𝑵𝑫

255 MANC, AZOX + TEBU, TFLX + PROT, TEBU, and TFLX + TEBU reduced WBI by at least 

256 52% and did not differ significantly among them (P > 0.12) based on linear contrasts. PYRA + 

257 EPOX was the least effective treatment (43.2%) and did not differ from TEBU (53.5%; P = 0.07) 

258 and TFLX + TEBU (52.2%; P = 0.06) (Supplemental Table S2). The difference in percent 

259 control efficacy between the most and least effective fungicide was 14.8 percent points (Table 

260 2). The Wald test for the treatment x design interaction showed that the network was consistent 

261 (P = 0.70).

262 Yield response ( ) was significantly higher (P < 0.0001) in all single a.i. and dual mixtures 𝐷

263 compared with the untreated CHECK (Table S3). The mean estimates of  ranged from 181.15 𝐷

264 kg/ha to 420.10 kg/ha. The two single a.i. treatments, MANC (420.10 kg/ha) and TEBU (319.46 

265 kg/ha) provided the greatest yield response, and linear contrasts showed no difference between 

266 them (P = 0.065). These were followed by AZOX + TEBU (301.48 kg/ha) and TFLX+PROT 

267 (299.73 kg/ha), which were not different between them (P = 0.90), but differed from 

268 TFLX+TEBU (245.34 kg/ha; P < 0.0001). All fungicides differed from PYRA + EPOX (181.15 

269 kg/ha) with regards to yield response. The difference between the highest and lowest yield 

270 response among the treatments was 238.95 kg/ha (Table 2, Table S3). The Wald test for the 

271 treatment x design interaction showed that the network was inconsistent, meaning that results 

272 were dependent on the design (P = 0.01).

273

274 Effect of moderator variables. The categories of WBI and wheat grain yield as baselines did 

275 not affect WBI or yield (P > 0.05). Similarly, year did not affect wheat grain yield (P = 0.26) or 

276 WBI (P = 0.74), suggesting no decline in fungicide efficacy or yield response over time.

277 Based on the Wald test (P < 0.0001), the expanded model including the categorical moderator 

278 variable region differed statistically from the simpler model for both disease index and yield 

279 response. The control efficacy in the Subtropical region was numerically higher compared to the 
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280 Tropical region for all treatments. A difference of at least 19.1 percent points in  between 𝐶

281 regions was significant (P < 0.05) for three fungicides (PYRA + EPOX, TFLX + PROT and 

282 MANC) (Table 2). Similarly, yield response from the use of fungicides was generally higher in 

283 the Subtropical than in the Tropical region. There was a statistical difference in  between 𝐷

284 regions for all fungicides, except TEBU (P = 0.1836). Significant differences in yield responses 

285 between regions ranged from 200 to 291 kg/ha (Table 2). 

286 In general, there was a similar pattern in the relationship between yield response and 

287 fungicide efficacy among regions. The treatment leading to the greatest mean yield response in 

288 both Tropical and Subtropical regions was MANC (Fig. 3). Similarly, MANC was the 

289 numerically most effective treatment in reducing disease index in the Subtropical region. For the 

290 Tropical region, TEBU and AZOX + TEBU exhibited a high control efficacy (~47%). Again, 

291 PYRA + EPOX provided the least yield response in both Tropical and Subtropical regions (Fig. 

292 3).

293

294 Profits and break-even probabilities. Estimates of parameters of the Gamma distribution for 

295 the distribution of wheat prices for the 2012 to 2020 period that produced higher P-value in the 

296 KS-test were obtained using non-linear regression (P = 0.9375). The P-value in the KS-test for 

297 the parameters estimated using MLE was 0.11. The estimates of the shape ( ) and the rate ( ) 𝜶 𝜷

298 parameters were 19.4 and 0.54, respectively.

299 Overall, fungicides were more profitable in the subtropical region, with break-even 

300 probabilities, , values higher than 0.99 for all fungicides (Fig. 4). In this region, the most 𝑃(𝐼 ≥ 𝐶)

301 profitable fungicide was MANC, with a mean profit of US$269.73/ha. The least profitable 

302 fungicide in the subtropical region was PYRA+EPOX, with a mean profit of US$118.17/ha. In 

303 the tropical region, break-even probabilities of fungicides were much lower than those obtained 

304 in the subtropics. The  values ranged from 0.17 (PYRA+EPOX) to 0.97 (MANC) (Fig. 𝑃(𝐼 ≥ 𝐶)

305 4). The most profitable fungicide was again MANC, with a mean profit of US$95.00/ha and the 

306 least profitable was PYRA+EPOX, with a negative mean profit of -US$17.66/ha. 

307

308 Discussion

309 This study provides an updated summary of the effects of different fungicides applied 

310 sequentially (three sprays starting at the heading stage) for managing wheat blast. For such, we 

311 gathered data from 44 uniform field trials conducted during nine growing seasons (2012 to 2020) 

312 across several wheat-producing states in Brazil. A previous study used a portion of the data used 

313 in this work; 17 cooperative trials conducted from 2012 to 2014 in Brazil) also with the goal of 
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314 comparing fungicide treatments (Cruz et al. 2019). The present study differs from the previous 

315 by evaluating a larger set of fungicide treatments, testing the effect of year and region within 

316 Brazil, and performing an economic analysis (Cruz et al. 2019). Results of our analysis generally 

317 corroborate the findings of that study for the Brazilian trials, which also reported a similar 

318 performance among the QoI+DMI premixes and a protectant fungicide. Similarly, a recent single 

319 field experiment (2019/20 season) conducted in Bangladesh reported a relatively high efficacy 

320 (65%) for MANC, which was close to our upper limit (95% confidence interval) estimate (Roy 

321 et al. 2020). The grain yield response from using MANC in the Bangladeshi study (744 kg/ha) 

322 was within the expected gain (close to the upper limit) of estimated trials conducted in the 

323 Subtropical region of Brazil. Among several differences in experimental conditions, it is worth 

324 noting the difference in the concentration of MANC that was a bit higher (800 g/kg) in that study 

325 compared with the recommended dose used in the Brazilian experiments (750 g/kg), which may 

326 explain the higher levels of efficacy and yield response.

327 Commercial premixes of QoI+DMI have been tested more extensively than MANC in 

328 independent research. For instance, in the study conducted by Cruz et al. (2019), the authors 

329 reported a relatively high control efficacy (58 to 68%) for picoxystrobin + cyproconazole, 

330 trifloxystrobin + tebuconazole, azoxystrobin + cyproconazole and pyraclostrobin + 

331 epoxiconazole applied twice across six field trials conducted in Bolivia from 2014 to 2015. 

332 Average yield responses obtained from applying those premixes in that study were extremely 

333 high, in the magnitude of 1,834 kg/ha (Cruz et al. 2019).

334 In Brazil, contrary to our findings, replicated field studies have reported higher levels of 

335 efficacy of PYRA+EPOX - ranging from 60% (Pagani et al. 2014) to 85% (Rios et al. 2016), 

336 compared with our estimates (95% CI 31 to 52%) regardless of the region. Overall, we found 

337 that this commercial premix performed the poorest among all treatments. Nevertheless, improved 

338 efficacy similar to those obtained in Bolivia, using PYRA + EPOX, can be expected especially in 

339 the southern region of Brazil, but with a high level of uncertainty (95% CI 17 to 74%). 

340 Tebuconazole is an affordable option widely used by Brazilian growers not only for 

341 controlling wheat blast, but also for managing other important wheat diseases such as Fusarium 

342 head blight disease (Machado et al. 2017; Duffeck et al. 2020; Barro et al. 2020). The mean 

343 estimates of TEBU applied solo (54%) as well as the premix TFLX + TEBU (52%) reported in 

344 our meta-analysis were very similar to a two-year study (TEBU = 57%; TFLX + TEBU = 50%) 

345 conducted in Midwest of Brazil during 2010 and 2011 crop seasons (Pagani et al. 2014). 

346 Moreover, the yield responses from using the TEBU based fungicides reported in that study 
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347 (~400 kg/ha) (Pagani et al. 2014) were within the expected range, mainly for trials conducted in 

348 the Subtropics where yield response was greater than in the Tropical region.

349 In general, the levels of control were superior and, on average, 18 percent points greater 

350 in the Subtropical region (54 to 66%) compared with the Tropical region (24 to 47%). The only 

351 exception was tebuconazole fungicide for which efficacy was not influenced by region. Our 

352 findings demonstrated a similar levels of disease control reported in single studies conducted in 

353 the tropics (60%) or Subtropics (85%) (Pagani et al. 2014; Rios et al. 2016). 

354 Results of our profitability analysis using the means and respective uncertainty of the 

355 estimates of yield return showed that, regardless of the region, the most profitable fungicide was 

356 MANC, given its lower price, and similar efficacy and yield response compared with the 

357 premixes. Although mancozeb was introduced in 1962, it is still important in the fungicide 

358 market worldwide and known to be a cost-effective fungicide (Gullino et al. 2010; Thind and 

359 Hollomon 2018). In fact, the probabilities of breaking even on costs of the commercial premixes 

360 of fungicides were generally lower, especially in the Tropical region, for all premixes (which are 

361 most costly) than MANC and TEBU, for which high break-even probabilities (> 92%) are 

362 expected.

363 It is worth mentioning that there are two different wheat production systems in the tropics of 

364 Brazil. The first is the irrigated and high-yielding system and where the blast is not a big concern 

365 and the non-irrigated under which the trials were established. In the latter case, sowing dates 

366 range from February to May (end of summer to begin of autumn) when the weather conditions 

367 are favorable for the disease. The combination of less susceptible cultivars and fungicide 

368 protection has been explored to improve disease management. For instance, Rios et al. (2016) 

369 reported the effect of cultivar when using PYRA + EPOX with greatest control levels using a 

370 cultivar that was considered less susceptible.

371 The use of premixes of single-site amended with multi-site fungicides has been tested more 

372 recently for wheat blast control. Preliminary data from the uniform fungicide trials (Santana et 

373 al. 2019b, 2019a, 2020a, 2020b) have shown grain yield benefits from adding a multi-site 

374 fungicide (mancozeb) in the mixture and more data will become available in the near future to 

375 confirm this observation. Additionally, the use of multi-site fungicides is important for managing 

376 fungicide resistance (FRAC-BR 2021). In fact, less sensitive PoT populations to QoIs and DMIs 

377 in Brazil have been reported, associated with mutations in cytochrome b gene (mainly G143A 

378 substitution) (Castroagudín et al. 2015) or CYP51 gene (several mutation points) (Dorigan et al. 

379 2019; Poloni et al. 2021). However, using a relatively long time series we did not find evidence 

380 of a decline in fungicide efficacy over the years for all commercial premixes amended with QoI 
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381 as well as TEBU applied solo. Whether QoIs are less effective or losing efficacy over the years 

382 could not be inferred given that none of the fungicides had QoI as a sole active ingredient. If that 

383 happens to be true, and confirmed by field research, it is possible that the DMI component in the 

384 premix is responsible for the disease reduction. Further research in this area will be important to 

385 contribute to the debate around the risk associated with the use of strobilurins for wheat blast 

386 control (Castroagudín et al. 2015; Oliveira et al. 2015; Poloni et al. 2021). 

387 In conclusion, the definition of the best options in fungicide programs for managing wheat 

388 blast should take into account region-specific factors that affect the performance of fungicides 

389 and also the need to extend control for other wheat diseases, a case where QoI + DMI premixes 

390 have found use not only in Brazil but elsewhere (Blandino et al. 2006; Willyerd et al. 2012; 

391 Barro et al. 2017; Paul et al. 2018b). Management tactics such as application of site-specific 

392 fungicides amended with multi-site fungicides programs; use of locally-adapted wheat cultivars 

393 carrying resistance genes against blast; and shifts in sowing time to escape conducive blast 

394 weather at heading stage, especially in the tropics, should be considered in an integrated 

395 management strategy against wheat blast. Overall, this work confirms the profitability of some 

396 site-specific and a multi-site fungicide, report their efficacy, and yield return by controlling 

397 wheat blast in both high disease-conducive region (tropical) and moderately disease-conducive 

398 region (subtropical) to blast occurrence, which may be useful for decision-making when defining 

399 fungicide programs.
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640 Table 1. Fungicide treatments evaluated for controlling wheat blast in 44 independent field trials 

641 conducted across six Brazilian states (PR, SP, DF, MT, MS, and MG) from 2012 to 2020

Fungicide 

a.i.a
Chemical 

groupb
Brand name

Nº 

trials
Dosage 

(mL or g/ha)

Costd 
(US$/ha)

AZOX+TEBU QoI+DMI Azimut 28 750 73

MANC DTC Unizeb Gold 41 3,000 50

PYRA+EPOX QoI+DMI Opera 28 500 45

TEBU DMI Tebuco Nortox 19 500 52

TFLX+PROT QoI+DMI Fox 44 500 82

TFLX+TEBU QoI+DMI Nativoc 44 750 75

642 a a.i. (active ingredient); AZOX + TEBU = azoxystrobin + tebuconazole; MANC = mancozeb; PYRA + EPOX = 

643 pyraclostrobin + epoxiconazole; TEBU = tebuconazole; TFLX + PROT = trifloxystrobin + prothioconazole; TFLX 

644 + TEBU = trifloxystrobin + tebuconazole.

645 b QoI = Quinone-outside inhibitors; DMI = Sterol demethylation inhibitor; DTC = Dithiocarbamate.

646 c Included in all trials as positive control to wheat blast.

647 D Overall costs (US$/ha) considering commercial prices of the 2019/20 crop season and three applications 

648 (operational cost for each application used was US$10.00/ha).

649
650

Page 22 of 31



                                                                                             Ascari et al.                23

651 Table 2. Overall means of Wheat Blast control efficacy ( ) and wheat yield response ( ) for each 𝐶 𝐷

652 fungicide treatment, relative to the untreated check, not conditioned (Overall) and conditioned 

653 (moderator analysis) to two climatic regions (Tropical [DF, MT, MS, MG] and Subtropical [PR, 

654 SP]), conducted during nine years (2012-2020) across six Brazilian states

 Control efficacy (%) Yield return (Kg/ha)

Fungicidea Region kb 𝐶 CIL
c CIU

c P-valued kb  𝐷 CIL
c CIU

c P-valued

Overall 33 58.0 49.8 64.8 35 420.1 315.6 524.6  

Tropical 13 42.1 26.1 54.7 14 241.3 94.7 387.9

MANC

Subtropical 20 66.5 40.6 81.1 0.0011 21 532.1 195.3 868.9 0.0027

Overall 39 53.9 44.6 61.6 42 299.7 221.9 377.5

Tropical 15 40.8 22.9 54.5 17 149.3 44.7 254.0

TFLX + PROT

Subtropical 24 59.9 26.4 78.2 0.0262 25 396.5 154.5 638.4 0.0004

Overall 18 53.6 43.2 62.1 19 319.5 221.6 417.3

Tropical 8 47.2 28.2 61.1 9 209.0 52.7 365.3

TEBU

Subtropical 10 56.9 13.3 78.6 0.3076 10 351.1 -14.6 716.8 0.1836

Overall 18 54.8 43.5 63.9 19 301.5 215.7 387.2

Tropical 7 47.1 26.2 62.1 8 157.0 52.7 261.3

AZOX + TEBU

Subtropical 11 58.4 10.9 80.6 0.2704 11 410.3 162.2 658.4 0.0006

Overall 39 52.2 43.5 59.6 42 245.3 172.9 317.8

Tropical 15 42.4 26.1 55.2 17 123.9 25.7 222.1

TFLX + TEBU

Subtropical 24 57.4 24.3 76.0 0.0685 25 323.4 94.6 552.2 0.0028

Overall 19 43.2 31.8 52.8 22 181.1 114.8 247.5

Tropical 8 24.2 2.81 40.9 10 29.1 -49.8 108.1

PYRA + EPOX

Subtropical 11 54.3 17.5 74.7 0.0037 12 255.0 65.4 444.6 <0.0001

655 a See Table 1 for complete information on the fungicides.

656 b number of trials that each fungicide was evaluated.

657 C upper (CIU) and lower (CIL) limits of the 95% confidence interval around  and .𝐶 𝐷
658 d probability value (significance level) for the effect of fungicide on disease reduction and yield response (at the selected 

659 climatic regions).

660

661
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662
663 Fig. 1. Geolocation of eleven municipalities across six Brazilian states where 44 fungicide trials 

664 were conducted from 2012 to 2020 (Campo Mourão - PR, Guarapuava - PR, Campo Verde - 

665 MT, Dourados - MS, Itaberá - SP, Londrina - PR, Palmeira - PR, Palotina - PR, Patos de Minas - 

666 MG, Planaltina - DF, Uberaba - MG). Dots were colored by climatic region and the size of the 

667 circle is proportional to the number of trials conducted at each location. 

668
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669
670 Fig. 2. Box plots depicting the means of wheat blast index (%) and wheat grain yield (kg/ha) 

671 (across years and locations) of the untreated (CHECK) and fungicide-treated plots (A to D); and 

672 the means of the same variables in the untreated plots within-region (B to E) and within-year (C 

673 to F) measured from a set of 44 field trials conducted from 2012 to 2020. Climatic regions 

674 defined in this study were: Tropical (DF, MT, MS, MG) and Subtropical (PR, SP). The thick 

675 horizontal line inside the box represents the median, the limits of the box represent the lower and 

676 upper quartiles, and the circles represent the yearly means of each treatment. See Table 1 for 

677 information on the fungicide treatments.

678
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679
680 Fig. 3. Relationship between fungicide efficacy and wheat grain yield relative to the untreated 

681 check, for six selected fungicide treatments evaluated during nine years (2012 to 2020) across 44 

682 field trials conducted across six Brazilian states (PR, SP, DF, MT, MS, and MG). Bars show the 

683 upper and lower limits of 95% confidence intervals around point estimates for both responses. 

684 See Table 1 for complete information on the evaluated fungicides.

685
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686
687 Fig. 4. Half-eye plots (density and point intervals) of profits (50,000 simulation runs) based on 

688 the meta-analytic estimate of yield return (kg/ha) for six fungicide treatments conditioned of two 

689 climatic regions (Tropical and Subtropical) evaluated during nine crop-seasons (2012 to 2020). 

690 The thinner error bars depict the 2.5 and 97.5 percentile of the distribution, while the thicker 

691 error bars represent 25 and 75 percentiles, and the solid colored point gives the median profit for 

692 each fungicide and region.  gives the break-even probabilities, i.e, income greater than the cost 𝑝

693 of each fungicide in each respective region. The numbered black dots represent the spraying 

694 costs in US$/ha of each fungicide. 
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1 Sequential Post-Heading Applications for Controlling Wheat Blast: A Nine-Year 

2 Summary of Fungicide Performance in Brazil

3 João P. Ascari et al.

4 Supplemental Figure and Tables

5

6

7 Fig. S1: Histograms for the distribution of Wheat blast index - WBI (A) and wheat grain yield 
8 (C) to check normality; B: log-transformed WBI data for normalizing the distribution and use in 
9 the meta-analysis models.

10
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11

12 Table S1. Designs (set of fungicide treatments by each trial) identified in 44 independent trials 
13 conducted from 2012 to 2020 in 11 municipalities across six Brazilian states (PR, SP, DF, MT, 
14 MS and MG).

Design Fungicides a.i. + untreated check a WB indexb Yieldb

1 CHECK; AZOX+TEBU; MANC; PYRA+EPOX; TEBU; TFLX+PROT; 
TFLX+TEBU

4 4

2 CHECK; AZOX+TEBU; PYRA+EPOX; TEBU; TFLX+PROT; 
TFLX+TEBU

5 5

3 CHECK; AZOX+TEBU; MANC; TEBU; TFLX+PROT; TFLX+TEBU 8 9

4 CHECK; AZOX+TEBU; MANC; TFLX+PROT; TFLX+TEBU 1 1

5 CHECK; MANC; PYRA+EPOX; TFLX+PROT; TFLX+TEBU 10 13

6 CHECK; MANC; TEBU; TFLX+PROT; TFLX+TEBU 1 1

7 CHECK; MANC;; TFLX+PROT; TFLX+TEBU 9 7

8 CHECK; TFLX+PROT; TFLX+TEBU 1 2

15 a See Table 1 for complete information about the treatments;
16 b Number of trials that each design of treatments was identified for both WB index and yield.
17

18
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19 Table S2. Overall means and respective confidence intervals of log response ratio ( ) and 𝐿𝐼𝑁𝐷

20 calculated percent control ( ) of Wheat Blast (WB) relative to untreated check provided by six 𝐶

21 fungicides evaluated during nine years (2012 to 2020) across 44 studies conducted in six Brazilian 

22 states (PR, SP, DF, MT, MS and MG). 

Effect Size WB Control (%) 

Fungicidea kb 𝑳𝑰𝑵𝑫 SE( )𝑳 CIL
c  CIU

c P value 𝑪 CIL
c CIU

c

MANC 33 -0.8677 0.0904 -1.0449 -0.6905 <0.0001 58.00 49.86 64.82

AZOX + 
TEBU 18 -0.7946 0.1144 -1.0188 -0.5704 <0.0001 54.82 43.46 63.89

TFLX+PROT 39 -0.7745 0.0938 -0.9583 -0.5907 <0.0001 53.90 44.60 61.64

TEBU 18 -0.7678 0.1035 -0.9706 -0.5650 <0.0001 53.59 43.16 62.11

TFLX+TEBU 39 -0.7395 0.0854 -0.9068 -0.5722 <0.0001 52.26 43.56 59.61

PYRA+EPOX 19 -0.5669 0.0939 -0.7509 -0.3829 <0.0001 43.27 31.81 52.80

23 a See Table 1 for complete information of the evaluated fungicides;    
24 b number of trials that each fungicide was evaluated; 
25 c upper (CIU) and lower (CIL) limits of the 95% confidence interval around  and .𝐿𝐼𝑁𝐷 𝐶
26
27
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28 Table S3. Overall means and respective confidence intervals of unstandardized difference in wheat 

29 grain yield ( ) between fungicide-treated and untreated plots, and percent yield increase ( ) for six 𝐷 𝑌

30 selected fungicide treatments evaluated during nine years (2012 to 2020) across 44 studies conducted 

31 in six Brazilian states (PR, SP, DF, MT, MS and MG).

Effect size Yield Return (%) 

Fungicidea kb 𝑫 SE( )𝐷 CIL
c  CIU

c P value 𝒀 CIL
c CIU

c

MANC 35 420.10 53.30 315.62 524.57 <0.0001 47.55 32.25 64.62

TEBU 19 319.46 49.91 221.63 417.29 <0.0001 38.68 26.54 51.98

AZOX + TEBU 19 301.48 43.75 215.73 387.24 <0.0001 37.01 23.07 52.51

TFLX+PROT 42 299.73 39.69 221.92 377.53 <0.0001 32.42 21.84 43.93

TFLX+TEBU 42 245.34 36.98 172.85 317.83 <0.0001 29.08 19.13 39.86

PYRA+EPOX 22 181.15 33.85 114.79 247.50 <0.0001 23.76 14.62 33.64

32 a See Table 1 for complete information on the fungicides;
33 b number of trials that each fungicide was evaluated;
34 c upper (CIU) and lower (CIL) limits of the 95% confidence interval around  and . 𝐷 𝑌
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